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GPU COMPUTING FOR 2D WAVE EQUATION BASED
ON IMPLICIT FINITE DIFFERENCE SCHEMES

In this paper we will consider the numerical implementation of the 2d wave equation which is a 
fundamental equation in many engineering problems. An approximate solution of a function is calculated 
from discrete points in spatial grid based on discrete time steps. The initial values are given by the initial 
value condition. First we will interpret how to transform a differential equation into an implicit finite-
difference equation, respectively, a set of finite-difference equations that can be used to calculate an 
approximate solution. Then we will change this algorithm to parallelize this task on GPU. Special focus 
is on improving the performance of

the parallel algorithm. In addition, we will run the implemented parallel code on the GPU and serial 
code the central processor, calculate the acceleration based on the execution time. We present that the 
parallel code that runs on a GPU gives the expected results by comparing our results to those obtained by 
running serial code of the same simulation on the CPU. In fact, in some cases, simulations on the GPU 
are found to run 22 times faster than on a CPU.

Key words: Numerical simulation, GPU, CUDA technology, wave equation, finite difference.

Introduction. The application of high-performance parallel computing in 
mathematical modeling opens up new possibilities for studying physical processes in longer 
time and more extensive spatial domains. Currently, various high-performance parallel 
computing is used in many areas. One of such applications is acoustics. One of the most 
important tasks of acoustics is the problem of wave field modeling. Already for several years, 
GPUs have been used to accelerate well parallelizable computing, only with the advent of 
a new generation of GPUs with multicore architecture; this direction began to give tangible 
results. The goal of this work is to develop a parallel implementation of the finite difference 
method for solving two-dimensional wave equation on a graphics processor using CUDA 
technology and to study the efficiency of parallelization by comparing the time of solving 
two-dimensional wave equation on a GPU and a central processor. There is a large amount 
of work devoted to numerical methods developed for the study of wave processes in recent 
decades. It includes a finite-difference method [1], a finite-volume method [2], the finite-
element method [3], a spectral-element method [4] a two-level compact ADI method [5] , the 
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implicit Finite Difference Time Domain Methods [6], a boundary [integral] element method 
[7], and spectral methods [8]. A completely non-linear model must be applied to many 
problems. Most models have been developed for technical applications. These numerical 
methods provide some of the most natural methods for modeling the propagation and 
scattering of underlying waves in electromagnetic, acoustic and elastic studies. However, 
as indicated in [9], the aforementioned methods have several disadvantages if the second-
order equations are converted to first-order systems before discretization, especially in the 
presence of several spatial dimensions. Therefore, recently, much attention has been paid 
to the development of efficient finite-difference methods that directly discretize second-
order differential equations [[10][11]]. The two- dimensional approach considers a highly 
idealized wave field, since even monochromatic waves in the presence of side perturbations 
quickly acquire a two-dimensional structure. The difficulties encountered are not a direct 
result of the increase in size.

The main complication is that the problem cannot be reduced to a two-dimensional 
problem, and even for the case of a two-periodic wave field, the problem of solving the 
Laplace-type equation for the velocity potential arises. Most models designed to study the 
three-dimensional dynamics of waves are based on simplified equations, such as second-
order perturbation methods, in which higher-order terms are ignored.

In general, it is unclear what effects are missing in such simplified models. Our current 
work is motivated by recent interest in the development and application of high-order 
compact difference methods for solving partial differential equations. Obviously, higher-
order compact difference schemes have better resolution on stencils with a compact grid 
compared to non-compact or low-level methods [12, 13]. For multidimensional problems, 
the efficiency of an implicit compact difference scheme depends on the computational 
efficiency of the corresponding matrix solvers. From this point of view, the ADI method 
[14] is promising because they can decompose a multidimensional problem into a series of 
one-dimensional problems. It has been shown that schemes acquired are unconditionally 
stable. For the proper assignment of large domains of modeling, two- or three-dimensional 
computational grids with a sufficient number of points are used. Calculations on such grids 
require more CPU time and computer memory resources. To accelerate the computation 
process, GPU technology was used in this paper, which allows the program to operate on 
larger grids. The graphics processing unit (GPU) is a highly parallel, multi-threaded, and 
multi-core processor with enormous processing power. Its low cost and high bandwidth 
floating point operations and memory access bandwidth are attracting more and more high 
performance computing researchers [15]. In addition, compared to cluster systems, which 
consist of several processors, computing on a GPU is inexpensive and requires low power 
consumption with equivalent performance. In many disciplines of science and technology, 
users were able to increase productivity by several orders of magnitude using graphics 
processors [16, 17]. GPU programming on NVIDIA graphics cards has become significantly 
easier with the introduction at the end of 2006 of the CUDA programming language (NVIDIA 
Corporation 2009a), which is relatively easy to learn because its syntax is similar to C. With 
GPU becoming available alternative to CPU for parallel computing, aforementioned parallel 
tridiagonal solvers and other hybrid methods have been implemented on GPUs [18-25].

Zhang et al. [18] first implemented parallel cyclic reduction (PCR) and then proposed a 
CR-PCR hybrid algorithm. A hybrid of PCR-Thomas method was proposed by Sakharnykh 
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[24], and it was also studied by Zhang et al. [18]. There are many examples in the literature 
of successfully using GPUs for wave propagation simulation [16- 31].

Here we consider some issues in the numerical simulation of some problems in the 
propagation of the wave in acoustic on GPU.

Numerical experiments. We consider two-dimensional wave equation
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and boundary conditions

                       u(t, x, 0) = 0, u(t, x, l) = 0, t ∈ [0; T], x ∈ [0; l];                                 (2.4)

                       u(t, 0, y) = 0, u(t, l, y) = 0, t ∈ [0; T], y ∈ [0; l].                                 (2.4)

We introduce a space-time grid with steps h1, h2, t respectively, in the variables x; y; t:

               w x ih i N y jh j N t k k Th h i j k1 2 1 20 0 0 1 2τ τ= = = = = = ={ , , ; , , ; ; , ,..., }             (2.8)

2.1. Alternating direction implicit (ADI) method. The Alternating Direction Implicit 
(ADI) method is a finite difference scheme and has long been used to solve partial differ-
ential equations (PDEs) in higher dimension. Originally it was introduced by Peaceman 
and Rachford [14], but many variants have been invented throughout the years [32-34]. In 
ADI method, each numerical step is split into several sub-steps based on the spatial dimen-
sion of the problem, and the linear equation system is solved implicitly in one direction 
while treating information in the other direction(s) explicitly. With this alternating calcula-
tions, ADI method is unconditionally stable and second order in time and space. Another 
favorable property of the ADI method is that in each sub-step the equations to be solved 
have a tridiagonal structure and can be solved efficiently with Tridiagonal Matrix Algorithm 
(TDMA).

For problem (2.1) the ADI method has the form
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Equation (2.1) then can be efficiently solved by ADI method [14] in two sub-steps.
At the first sub-step, Equation (2.9) is solved in i direction:
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2.2. Cyclic reduction algorithm (CR). Cyclic reduction algorithm was invented by W. 
Hockney in the 1965 [35] and the CR algorithm consists of two steps: forward reduction and 
backward substitution. The forward reduction step sequentially eliminate the odd-indexed 
unknowns and then unknowns are re-ordered and the process is continued until one equa-
tion with one unknown is left. The backward substitution step solves the remaining one 
equation and finds the unknown y, consequently finds all unknowns from the previous steps, 
this algorithm fully described in work zhang[18].

Using the implicit subscheme (2.9), the cyclic reduction method is performed in the x 
direction, with the result that we get the grid function ui j

k
,
/+1 2 . In the second fractional time 

step, using the subscheme (2.10), the Cyclic reduction method is performed in the direction 
of the y axis, with the result that we get the grid function ui j

k
,
+1 . The Cyclic reduction algo-

rithm has the order 0(t + h2), i.e. the first order in time and the second in x and y variables. 
In the following, we demonstrate numerical simulations.

All calculations are made in C++ by using the cyclic reduction algorithm. For all simu-
lations Dt = 0,01, Dx = Dy = 0,01. In all visualization of result, we use Matlab R2018b.

For simulation we use initial condition:

U x y
x x y y if x and y
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Ut(x, y, 0) = 0 and dirichlet boundary conditions. Some results are illustrated in Fig.1.

                                 t = 0                                                        t = 0,05
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                            t = 0,3	                                                    t = 1,0

Figure 1 – Displacement of wave at different times.

We adopt the unit square (x, y) ∈ [0; 1] × [0;1] as the spatial solution domain with 100 
elements per each side and 100 interior points, c = 1, with initial condition

                              u x y x y u x y
t

( , , ) sin( )sin( ), ( , , )0 2 2 0 0= ∂
∂

=π π

and u(0, y, t) = u(1, y, t) = u(x, 0, t) = u(y, 1, t) = 0 on the boundaries. The analytical solution 
of equation 2.1 is as flows: u(x, y, t) = cos( )sin( )sin( )2 2 2 2π π πt x y .

Graphic comparisons of the exact solution with the numerical and errors are shown in 
figure 2.

Table 1 – Maximum norm and norm errors.

h max error L2 – norm
0,001 10–3 10–22

0,0001 10–3 10–22

0,00001 10–3 10–23

0,00001 10–3 10–25

0,000001 10–3 10–27

Table 1 displays the convergence rate of displacement solution under grid refinement. 
The convergence rates in maximum norm at the final time shows forth order convergence.

Figure 2 – Solution for time t = 1, Dx = Dy = 0,010101, 
Dt = 0,0001001 from left to right exact, numerical, error
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CUDA IMPLEMENTATION. Nowadays Graphics Processing Units(GPUs) or 
graphics processors have evolved from fixed-function processors specialized for three-
dimensional graphics operations to a fully programmable computing platform for a wide 
variety of computationally demanding applications. Modern GPUs are massively data-
parallel throughput-oriented many-core processors capable of providing TFLOPS of 
computing performance and quite high memory bandwidth compared to a high performance 
CPU.

In 2007, NVIDIA introduced CUDA, an extension to C programming language, for 
general purpose computing on graphics processors. It is designed so that its constructions 
allow a natural expression of concurrency at the data level. A CUDA program consists of 
two parts: a sequential program running on the CPU, and a parallel part running on the GPU 
[37, 38]. The parallel part is called the kernel. A C program using CUDA extensions hand 
out a large number of copies of the kernel into available multiprocessors to be performed 
contemporaneously. The CUDA code consists of three computational steps: transferring 
data to the global GPU memory, running the CUDA core, and transferring the results from 
the GPU to the CPU memory. The algorithm for solving the problem (2.1) is shown in 
Algorithm 1.

Algorithm 1 – Implementation of 2D wave equation

1.	 compute initial condition matrix U0
2.	 from initial condition (2.2) we can get u = U0
3.	 while (t < tend) do
4.	 for j = 0 ,..., n
5.	 for i = 0 ,..., n
6.	 calculate tridiagonal system elements ai, bi, ci, fi
7.	 call function CR(ai, bi, ci, fi, yi, n)
8.	 calculate matrix Ux
9.	 for i = 0, ..., n
10.	 for j = 0, ..., n
11.	 calculate tridiagonal system elements aj, bj, cj, fj
12.	 call function CR(aj, bj, cj, fj, yj, n)
13.	 calculate matrix Uy
14.	 swap (u, Ux)
15.	 swap (U0,Uy)
16.	 t = t + Dt 
17.	 end while

Here, u, U0, Ux, Uy denote u u u ui j
k

i j
k

i j
k

i j
k

,
/

, ,
/

,, , ,− + +1 2 1 2 1  respectively

EXPERIMENTAL RESULTS. In this section we show the results obtained on a laptop 
with configuration, 640 cores GeForce GTX 1050, NVIDIA GPU together with a CPU Intel 
Core i7 8th gen, 2.20 GHz, RAM 8Gb. Simulation parameters are configured as follows. 
Mesh size is uniform in both directions with ∆x = ∆y = 1/(N - 1), c = 1 and numerical time 
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step Dt is 0.01 s, and simulation time is T = 1.0s, therefore the total number of time steps 
is 100. To present more realistic data, we tested six cases with domain sizes of 64x64; 
128x128; 512x512; 1024x1024; 2048x2048 and 4096x4096.

The performance of a parallel algorithm is determined by calculating its speedup.
Speedup is defined as the ratio of the best-case execution time of the sequential algorithm 

for a particular problem to the worst-case execution time of the parallel algorithm.

Speedup CPUtime
GPUtime

=

In Table 2 we report the execution times in seconds for serial (CPU time) and CUDA 
(GPU time) implementation of cyclic reduction method to the problem (2.1)-(2.5) together 
with the values of the speedup computed as the ratio in different devices

Table 2 – Execution timing and speed up with the Intel Core i7 8th gen, 
2.20 GHz, NVIDIA GTX 1050.

Domain sizes CPU time GPU time Speedup
64 × 64 2.417 0.863 2.8

128 × 128 7.95 1.558 5.1
512 × 512 155.33 18.71 8,3

1024 × 1024 1198.281 76.813 15.6
2048 × 2048 1885.483 104.343 18.07
4096 × 4096 3590.3 161.33 22.3

CONCLUSIONS AND FUTURE WORK. In this paper, we have introduced a nu-
merical solution of a two-dimensional wave equation based on an implicit finite difference 
scheme using the cyclic reduction method. We develop an approach parallelization of the 
cyclic reduction method on the graphic processing unit parallelization of the cyclic reduc-
tion method on the graphic processing unit. And we showed how we accelerated the cyclic 
reduction method on the NVIDIA GPU. From the test results of table 1, it can be seen that 
the acceleration algorithm proposed by us gives a good result. Our GPU implementation 
obtained a speedup around 22,3x.
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ЕКІ ӨЛШЕМДІ ТОЛҚЫН ТЕҢДЕУІН АЙЫҚЫН ЕМЕС АЙЫРЫМДЫЛЫҚ
ТЕҢДЕУІ НЕГІЗІНДЕ ГРАФИКАЛЫҚ ПРОЦЕССОРДЕ (GPU) ЕСЕПТЕУ

Бұл жұмыста біз көптеген инженерлік есептердің негізгі теңдеу болып табылатын екі 
өлшемді толқын теңдеудің сандық шешуді қарастырамыз. Функцияның жуық шешімі кеңістіктік 
тордағы дискретті нүктелерден уақыттың дискретті қадамдары негізінде есептеледі. Бастапқы 
мәндер бастапқы мәннің шартымен беріледі. Алдымен біз дифференциалдық теңдеуді айқын 
емес айырымдық теңдеулерге қалай айналдыруға болатындығын, сәйкесінше, шешімді есептеу 
үшін қолдануға болатын ақырлы-айырымдық теңдеулер жиынтығын түсіндіреміз. Содан кейін 
біз бұл тапсырманы GPU-ге параллельдеу үшін осы алгоритмді өзгертеміз. Параллель алгорит-



Сontents

THE KEY PROBLEMS of the DEVELOPMENT of SCIENCE and ENGI-
NEERING ACTIVITY

B. T. Key to moving forward ......................................................................................... 5

ENGINEERING MECHANICS

Jasen S. J., Jakiyev D. K., Zhunisbekov S. Investigation of multi-cycle fatigue 
of equipment and machinery elements under complex stress conditions and non- 
stationary loading ................................................................................................... 11

Kyrykbaev B. Zh., Utelieva N. K., Shingisov B. T., Maksut D. M. Axisymmetric 
bending of a cylindrical tank ................................................................................. 18

Saparbaev A. D., Makulova A. T., Eleusov A. A. Models of grain transporta-
tion in a complex system of grain processing plants ............................................. 26

APPLIED MATHEMATICS

Altybay A.,Tokmagambetov N., Spabekova Z. GPU computing for 2D wave 
equation based on implicit finite difference schemes ........................................... 32

Zhakebayev D., Agadayeva D. Kahn-Hilliard model for mixtures of binary 
liquids ..................................................................................................................... 42

Mustafin M. B., Turar O. N., Akhmed-Zaki D. Zh. Testing vulkan visualiza-
tion for geomodels on systems with graphic processors for ray tracing .............. 50

Temirbekov N. M., Baigereyev D. R., Temirbekov A. N. Using the resources 
of a distributed information system for solving applied problems ....................... 61

DIGITAL TECHNOLOGY

Daribayev B. S. , Imankulov T. S., Akhmed-Zaki D. Zh. Parallel algorithm on 
cuda for solving multiphase, multicomponent fluid filtration problems in porous 
media. .................................................................................................................... 69

Zharkimbekov A. T., Ospanov A. B., Sagindykov K. M. The role of regulatory 
documents in the field of information security used in the study of the security of 
computer networks. ................................................................................................ 77

Mamyrbayev O., Akhmediyarov A., Kydyrbekov A., Mekebayev N. M. Turda-
lyuly M. Voice identification based on the i-vector and deep neural networks us-
ing short utterances .............................................................................................. 82

Tursyngaliyeva G. N. Computer research of the mathematical model of eth-
nic group development ......................................................................................... 91



CHEMICAL TECHNOLOGY 

Bazarbayeva S. M. Flame retardants for wood based on man-made waste .... 96

Dakieva K. Zh., Tusupova Zh. B., Sedelev V. A., Garmashova S. A., Beisem-
baeva R. S., Tsyganov A. P., Kaisarova A. S. Experimental assessment of the 
impact of adverse factors of titanium-magnesium production .............................. 103

Izteleu B. M., Azimbaeva G. E., Bakibaev A. A. Study of the vitamins contained 
in the dahlia eveline plant by titrimetric and capillary electrophoresis methods ... 111

Iriskina L. B., Musabaeva W.  A., Amanbaeva, M. K. Bakunova A. S., Naumova 
G.K. Studying of anti-radical properties of phenols and heterocyclic amines ...... 119

 Montayev S. A., Shinguzhiyeva A. B., Dosov K. Zh., Shakeshev B. T., Mon-
tayeva N. S. Research of drying properties of ceramic mass in the system «loess-
like loam - ash of ekibastuz hpp" .......................................................................... 126

ECONOMY

Baibulekova L., Lukhmanova G., Zaitenova N., Musina A. Analysis of measures 
of anti-crisis regulation of the Kazakhstan’s banking sector ................................. 134

Baimukhametova A. Zh. Evolutionary changes in the content of innovative 
entrepreneurship .................................................................................................... 141

Zhangirova R. N. Labor productivity – one of the major efficiency criteria of 
the agricultural sector of the Republic of Kazakhstan. ......................................... 148

Zhuparovа А. S. , Zhaisanova D. S. State support and economic incentives for 
the development of scientific production in the Republic of Kazakhstan ............. 153

Iskakov T. U., Issayeva A. U., Dosybayeva G. N., Nurasheva K. K. Research 
of factors influencing the competitiveness of products of Kazakhstan company 
araltuz jsc ............................................................................................................... 161

Kalmakova D. T., Zhidebekkyzy A. Analysis of foreign approaches to the es-
timation of innovations’ commercialization effectiveness .................................... 171

Karakozhayeva A. M., Issabekov B. N. Methodological approaches to assess-
ing the effectiveness of human capital in innovative companies ............................. 178

Kunanbaeva D. A., Baizhanova L. B. Design business models as a tool for in-
novative management of companies .................................................................... 185

Umirzakov S., Nurgabdeshov A., Zamanbekov D., Gumarova N. Cultural in-
telligence and work engagement of expatriates: moderating role of supporting 
practices ................................................................................................................. 191

AGROINDUSTRY

Ospanov A. B., Kulzhanova B. O., Tolybayev Sh. D.Research of design and 
technological parameters of cleaning clover seeds by color sorting .....................

197



JUBILEE DATE

Baimuratov Uraz Baimuratovich (To 85-th birthday) ................................. 203

Kozhakhmetov Sultanbek Myrzakhmetovich (To 85-th birthday) ............ 204

Akberdin Tles Zhumataevich (To 80-th birthday) ..................................... 205

Bitimbaev Marat Zhakupovich (To 80-th birthday) .................................... 206

Zholtaev Geroy Zholtaevich (To 80-th birthday) .......................................... 207

Dosmanbetov Bakbergen Sarsenovich (To 75-th birthday) ........................ 208

Tulebaev Kopsekbai Ratkulovich (To 70-th birthday) ................................ 209

Satova Raushan Kulmagambetovna (To 70-th birthday) ............................ 210

Temirbekov Nurlan Mukhanovich (To 60-th birthday) ............................... 211

The chronicle, events, facts ........................................................... 212

THE INFORMATION ABOUT AUTHORs .................................................... 219


